Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use.

نویسندگان

  • A F López-Millán
  • F Morales
  • S Andaluz
  • Y Gogorcena
  • A Abadía
  • J De Las Rivas
  • J Abadía
چکیده

Different root parts with or without increased iron-reducing activities have been studied in iron-deficient and iron-sufficient control sugar beet (Beta vulgaris L. Monohil hybrid). The distal root parts of iron-deficient plants, 0 to 5 mm from the root apex, were capable to reduce Fe(III)-chelates and contained concentrations of flavins near 700 microM, two characteristics absent in the 5 to 10 mm sections of iron-deficient plants and the whole root of iron-sufficient plants. Flavin-containing root tips had large pools of carboxylic acids and high activities of enzymes involved in organic acid metabolism. In iron-deficient yellow root tips there was a large increase in carbon fixation associated to an increase in phosphoenolpyruvate carboxylase activity. Part of this carbon was used, through an increase in mitochondrial activity, to increase the capacity to produce reducing power, whereas another part was exported via xylem. Root respiration was increased by iron deficiency. In sugar beet iron-deficient roots flavins would provide a suitable link between the increased capacity to produce reduced nucleotides and the plasma membrane associated ferric chelate reductase enzyme(s). Iron-deficient roots had a large oxygen consumption rate in the presence of cyanide and hydroxisalycilic acid, suggesting that the ferric chelate reductase enzyme is able to reduce oxygen in the absence of Fe(III)-chelates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound Putrescine, a Distinctive Player under Salt Stress in the Natrophilic Sugar Beet in Contrast to Glycophyte Tobacco

The influence of salinity on the different polyamine fractions (free, conjugated, and bound) was compared in a natrophilic halophyte (Beta vulgaris L. cv. IC) and a salt sensitive glycophyte (Nicotiana rustica L. cv. Basmas). Low-level salinity (25 mM NaCl) and high salinity (150 and 50 mM NaCl for sugar beet and tobacco, respectively) were supplied in hydroponics. Under low salinity shoot dry ...

متن کامل

Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves.

The effects of iron deficiency and iron resupply on the metabolism of leaf organic acids have been investigated in hydroponically grown sugar beet. Organic acid concentrations and activities in leaf extracts of several enzymes related to organic acid metabolism were measured. Enzymes assayed included phosphoenol pyruvate carboxylase (PEPC; EC 4.1.1.31), different Krebs cycle enzymes: malate deh...

متن کامل

Chlorophyll Fluorescence and Photon Yield of Oxygen Evolution in Iron-Deficient Sugar Beet (Beta vulgaris L.) Leaves.

The response of sugar beet (Beta vulgaris L.) leaves to iron deficiency can be described as consisting of two phases. In the first phase, leaves may lose a large part of their chlorophyll while maintaining a roughly constant efficiency of photosystem II photochemistry; ratios of variable to maximum fluorescence decreased by only 6%, and photon yields of oxygen evolution decreased by 30% when ch...

متن کامل

Iron deficiency in plants: an insight from proteomic approaches

Iron (Fe) deficiency chlorosis is a major nutritional disorder for crops growing in calcareous soils, and causes decreases in vegetative growth as well as marked yield and quality losses. With the advances in mass spectrometry techniques, a substantial body of knowledge has arisen on the changes in the protein profiles of different plant parts and compartments as a result of Fe deficiency. Chan...

متن کامل

Characterization of the Xanthophyll Cycle and Other Photosynthetic Pigment Changes Induced by Iron Deficiency in Sugar Beet (Beta vulgaris L.).

In this work we characterize the changes induced by iron deficiency in the pigment composition of sugar beet (Beta vulgaris L.) leaves. When sugar beet plants were grown hydroponically under limited iron supply, neoxanthin and beta-carotene decreased concomitantly with chlorophyll a, whereas lutein and the carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 124 2  شماره 

صفحات  -

تاریخ انتشار 2000